Remarks on a fractional-time stochastic equation
نویسندگان
چکیده
We consider a class of fractional-time stochastic equation defined on bounded domain and show that the presence time derivative induces significant change in qualitative behaviour solutions. This is sharp contrast with phenomenon showcased [ALEA Lat. Am. J. Probab. Math. Stat. 12 (2015), pp. 551–571] extented [Stochastic Process Appl. 126 (2016), 1184–1205] [Electron. Commun. 23 (2018)]. also as one tunes off fractional fractional derivative, solution behaves more like its usual counterpart.
منابع مشابه
Remarks on some linear fractional stochastic equations
Using the multiple stochastic integrals we prove an existence and uniqueness result for a linear stochastic equation driven by the fractional Brownian motion with any Hurst parameter. We study both the one parameter and two parameter cases. When the drift is zero, we show that in the one-parameter case the solution in an exponential, thus positive, function while in the two-parameter settings t...
متن کاملStochastic solution to a time-fractional attenuated wave equation.
The power law wave equation uses two different fractional derivative terms to model wave propagation with power law attenuation. This equation averages complex nonlinear dynamics into a convenient, tractable form with an explicit analytical solution. This paper develops a random walk model to explain the appearance and meaning of the fractional derivative terms in that equation, and discusses a...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملStochastic Heat Equation Driven by Fractional Noise and Local Time
The aim of this paper is to study the d-dimensional stochastic heat equation with a multiplicative Gaussian noise which is white in space and it has the covariance of a fractional Brownian motion with Hurst parameter H ∈ (0, 1) in time. Two types of equations are considered. First we consider the equation in the Itô-Skorohod sense, and later in the Stratonovich sense. An explicit chaos developm...
متن کاملOn time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2021
ISSN: ['2330-1511']
DOI: https://doi.org/10.1090/proc/14644